S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation.

نویسندگان

  • Alexandre Huchelmann
  • Clément Gastaldo
  • Mickaël Veinante
  • Ying Zeng
  • Dimitri Heintz
  • Denis Tritsch
  • Hubert Schaller
  • Michel Rohmer
  • Thomas J Bach
  • Andréa Hemmerlin
چکیده

S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway-dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-Carvone Suppresses Cellulase-Induced Capsidiol Production in Nicotiana tabacum by Interfering with Protein Isoprenylation1[C][W]

Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France ...

متن کامل

Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.

In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-t...

متن کامل

Determination of capsidiol in tobacco cells culture by HPLC.

Capsidiol is a bicyclic sesquiterpene, which accumulates extracellularly in plants, and has been isolated from many types of Solanaceae. It acts as a phytoalexin produced by Nicotiana tabacum in response to pathogens. Capsidiol has antifungal activity and is formed first in tobacco and pepper plants after infestation. The amount of capsidiol in tobacco cell suspension culture has been previousl...

متن کامل

Stereospecific hydrogenation of the C-C double bond of enones by Escherichia coli overexpressing an enone reductase of Nicotiana tabacum

We examined the biotransformation of enantiomeric pairs of enones such as pulegone and carvone in recombinant Escherichia coli expressing Nicotiana tabacum pulegone reductase. It was found that recombinant E. coli cells acquired the ability for stereospecific hydrogenation of the exocyclic C=C double bond of pulegone. However, stereospecificity in hydrogenation with the recombinant E. coli cell...

متن کامل

Farnesol is utilized for isoprenoid biosynthesis in plant cells via farnesyl pyrophosphate formed by successive monophosphorylation reactions.

The ability of Nicotiana tabacum cell cultures to utilize farnesol (F-OH) for sterol and sesquiterpene biosynthesis was investigated. [(3)H]F-OH was readily incorporated into sterols by rapidly growing cell cultures. However, the incorporation rate into sterols was reduced by greater than 70% in elicitor-treated cell cultures whereas a substantial proportion of the radioactivity was redirected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 164 2  شماره 

صفحات  -

تاریخ انتشار 2014